Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shipboard training equips early career ocean professionals (ECOPs) with the skills, knowledge, and confidence to tackle the challenges of marine research. Such training helps develop a workforce essential for implementing a truly global ocean observation system and advancing understanding of the ocean and its sustainable use. Working with other organizations and individuals, the Partnership for Observation of the Global Ocean (POGO) offers opportunities to ECOPs, mainly from developing countries, to join research cruises and acquire hands-on experience with real-world oceanographic work. These learning experiences can be organized either as one-on-one training on research cruises with spare berths or collective training on dedicated expeditions designed for larger groups of international students. This article introduces POGO’s shipboard training program by presenting examples from each of the modalities, and it explores the program’s long-term impacts and future directions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
null (Ed.)Abstract Nitrous oxide (N 2 O) is important to the global radiative budget of the atmosphere and contributes to the depletion of stratospheric ozone. Globally the ocean represents a large net flux of N 2 O to the atmosphere but the direction of this flux varies regionally. Our understanding of N 2 O production and consumption processes in the ocean remains incomplete. Traditional understanding tells us that anaerobic denitrification, the reduction of NO 3 − to N 2 with N 2 O as an intermediate step, is the sole biological means of reducing N 2 O, a process known to occur in anoxic environments only. Here we present experimental evidence of N 2 O removal under fully oxygenated conditions, coupled with observations of bacterial communities with novel, atypical gene sequences for N 2 O reduction. The focus of this work was on the high latitude Atlantic Ocean where we show bacterial consumption sufficient to account for oceanic N 2 O depletion and the occurrence of regional sinks for atmospheric N 2 O.more » « less
-
null (Ed.)Surface ocean biogeochemistry and photochemistry regulate ocean–atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or p CO 2 ) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N 2 O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.more » « less
-
Abstract. Large-scale climatic forcing is impactingoceanic biogeochemical cycles and is expected to influence the water-columndistribution of trace gases, including methane and nitrous oxide. Our abilityas a scientific community to evaluate changes in the water-column inventoriesof methane and nitrous oxide depends largely on our capacity to obtain robustand accurate concentration measurements that can be validated acrossdifferent laboratory groups. This study represents the first formalinternational intercomparison of oceanic methane and nitrous oxidemeasurements whereby participating laboratories received batches of seawatersamples from the subtropical Pacific Ocean and the Baltic Sea. Additionally,compressed gas standards from the same calibration scale were distributed tothe majority of participating laboratories to improve the analytical accuracyof the gas measurements. The computations used by each laboratory to derivethe dissolved gas concentrations were also evaluated for inconsistencies(e.g., pressure and temperature corrections, solubility constants). Theresults from the intercomparison and intercalibration provided invaluableinsights into methane and nitrous oxide measurements. It was observed thatanalyses of seawater samples with the lowest concentrations of methane andnitrous oxide had the lowest precisions. In comparison, while the analyticalprecision for samples with the highest concentrations of trace gases wasbetter, the variability between the different laboratories was higher:36% for methane and 27% for nitrous oxide. In addition, thecomparison of different batches of seawater samples with methane and nitrousoxide concentrations that ranged over an order of magnitude revealed theramifications of different calibration procedures for each trace gas.Finally, this study builds upon the intercomparison results to developrecommendations for improving oceanic methane and nitrous oxide measurements,with the aim of precluding future analytical discrepancies betweenlaboratories.more » « less
An official website of the United States government
